> Home > Research > Investigators > Research groups

  1. Stem cells and regeneration

    Many tissues including the brain contain quiescent stem cell populations, which are activated upon damage. We study recently discovered damage-responsive neural stem cells in the fruit fly, which start proliferating after traumatic brain injury and efficiently produce new neurons in the injured brain region. We want to uncover the injury signals and molecular mechanisms that activate neural stem cells and control regenerative neurogenesis. We are also interested in understanding how altered stem cell plasticity (hyperactivation or adult neural stem cell loss) impacts on tissue regeneration, aging and cancer.
    To uncover regulators of stem cell activation and neural differentiation, we use highly sensitive lineage tracing tools, in combination with whole genome expression profiling, functional genetics and high-end confocal microscopy.
    Moreover, we complement current efforts to understand brain regeneration at the cellular level with behavioral assays to answer fundamental questions such as how adult-born neurons integrate into pre-existing circuits and how they may contribute to recovery of impaired brain functions after injury. This setup allows us to interrogate brain restorative processes in a holistic fashion.

Key publications

  • Dina S. Coelho, Silvia Schwartz, Marisa M. Merino, Barbara Hauert, Barbara Topfel, Christa Rhiner and Eduardo Moreno (2018) Culling less fit neurons protects against amyloid-Beta-induced brain damage and cognitive and motor decline Cell Rep
  • Schwartz S and Rhiner C (2018) Reservoirs for Repair? Damage-responsive stem cells and adult tissue regeneration in Drosophila. Int. J. Dev. Biol.
  • Simões AR, Rhiner C (2017) A Cold-Blooded View on Adult Neurogenesis Front Neurosci
  • Merino MM, Rhiner C, Lopez-Gay JM, Buechel D, Hauert B, Moreno E (2015) Elimination of unfit cells maintains tissue health and prolongs lifespan Cell
  • Moreno E, Fernandez-Marrero Y, Meyer P, Rhiner C. (2015) Brain regeneration in Drosophila involves comparison of neuronal fitness. Curr. Biol.
  • Merino MM, Rhiner C, Portela M, Moreno E (2013) "Fitness fingerprints" mediate physiological culling of unwanted neurons in Drosophila Curr. Biol.
  • Rhiner C, López-Gay JM, Soldini D, Casas-Tinto S, Martín FA, Lombardía L, Moreno E (2010) Flower Forms an Extracellular Code that Reveals the Fitness of a Cell to its Neighbors in Drosophila Dev. Cell